PROJETO DE PONTE DE MADEIRA

MEMORIAL DESCRITIVO

OBRA: REFORMAS PALIATIVAS DE PONTES DE MADEIRA

TIPO DA OBRA: OBRA DE ARTE ESPECIAL

PROPRIETÁRIO: PREFEITURA DE NOVA BRASILÂNDIA

BAIRRO: ZONA RURAL MUNICÍPIO: NOVA BRASILÂNDIA – MT

1. Objetivo

Reforma paliativa de pontes de madeira, sendo elas:

N°	Ponte	Dimensão (m)	Coordenada
1	AFLUENTE DO ARICÁ 1	10,50 x 4,50	14°34'55.20"\$ 55°6'44.80"O
2	AFLUENTE DO PIÇARRÃO 1	9,80 x 4,50	14°56'36.60"\$ 55° 0'58.60"O
3	AFLUENTE DO SOBRETUDO 1	12,00 x 4,50	14°59'32,53"\$ 54°57'43.92"O
4	AFLUENTE DO SOBRETUDO 7	10,00 x 4,50	14°57'10.00"\$ 54°55'29.70"O
5	AFLUENTE DO SOBRETUDO 8	6,50 x 4,50	14°57'52.70"\$ 54°56'37.20"O
6	AFLUENTE DO SOBRETUDO 10	14,00 x 4,50	15° 0'14.32"\$ 54°55'38.37"O
7	BONITO	20,00 x 4,50	14°59'18" \$ 54°52'35"O
8	CÓRREGO AZUL 1	10,00 x 4,50	14°51'26" \$ 54°46'50"O
9	CÓRREGO AZUL 2	12,50 x 4,50	14°48'18.35"\$ 54°51'46.27"O
10	CÓRREGO FEIO 2	17,50 x 4,50	14°51'7.54"\$ 54°45'29.05"O
11	CÓRREGO DO MACACO 2	6,50 x 4,50	14°50'49.93"\$ 54°56'10.62"O
12	PIRAPUTANGA 2	15,00 x 4,50	14°40'5.60"S 54°58'23.50"O
13	PORTEIRÃO	8,80 x 4,50	14°52'12.01"\$ 54°49'26.83"O
14	SALOBRA 1	11,80 x 4,50	14°40'6.98"\$ 55°18'19.86"O
15	SIPUTÁ 1	10,00 x 4,50	14°39'46.46"\$ 55°0'41.94"O
16	SOBRETUDO 1	34,00 x 4,50	14°58'58" \$ 54°55'53"O
17	SOBRETUDO 2	40,00 x 4,50	14°58'20.40"\$ 54°56'1.30"O
18	SOBRETUDO 3	14,50 x 4,50	15° 0'35.00"\$ 54°56'32.90"O
19	AFLUENTE DO FICA FACA 5	7,50 x 4,50	14°57'11.39"\$ 54°57'33.58"O

2. Introdução

É de suma importância sob a ótica do desenvolvimento do município, o transporte de produtos agropecuários e pessoas da região rural. Ao longo do tempo foram empregadas pontes de madeira de forma errônea e com carência de informações técnicas, isso pode acarretar no desconforto e insegurança no transporte dos usuários de vias vicinais.

Estradas rurais descuidadas e pontes em péssimo estado físico pode gerar custos elevados no frete de produtos e maiores gastos em relação a administração pública municipal.

Pelo fato descrito acima, vê a necessidade de um detalhamento mais preciso e correto nos projetos de pontes de madeira.

3. Base de cálculo

3.1. Propriedades da madeira

Há quatro propriedades referente a madeira que devem ser observadas a priori: densidade, resistência, rigidez ou módulo de elasticidade e umidade.

A densidade é utilizada para encontrar o peso próprio da madeira, e pode ser adotado o valor da densidade aparente.

Encontra-se o valor da resistência em ensaios de laboratórios ou então pelos valores tabelados pela norma brasileira que apresentam valores de diversas espécies.

O módulo de elasticidade determina o comportamento da madeira na fase elástico linear. É necessário obter os módulos nas direções paralela (E_0) e perpendicular (E_{90}) as fibras. Na falta de análises experimental do módulo, pode-se utilizar a relação:

$$E_0 = 20.E_{90}$$

A umidade presente na madeira pode alterar os valores de resistência e elasticidade, por este motivo estes valores devem ser ajustados de acordo com a umidade local da estrutura. Na **Imagem 1** mostra-se os valores das umidades correspondentes com o ambiente, e a seguir estão as equações de reajuste dos valores de resistência e módulo de elasticidade em relação ao padrão de umidade de 12%.

$$f_{12} = f_{U\%} \left[1 + \frac{3(U\% - 12)}{100} \right]$$

$$E_{12} = E_{U\%} \left[1 + \frac{2(U\% - 12)}{100} \right]$$

Estas equações podem ser aplicadas em teores de umidade com intervalo de 10% a 20%.

Classes de umidade	Umidade relativa do ambiente $(\mathrm{U_{amb}})$	Umidade de equilíbrio da madeira (U _{eq})
1	≤ 65 %	12 %
2	$65 \% < U_{amb} \le 75 \%$	15 %
3	$75 \% < U_{amb} \le 85 \%$	18 %
4	U _{amb} > 85 % durante longos períodos	≥ 25 %

Imagem 1 - Classes de umidade (Fonte: NBR 7190:1997)

Para valores de umidade maiores de 20% e temperaturas entre 10°C e 60°C admite-se como desprezível as variações das propriedades da madeira. A NBR 7190:1997, padroniza as propriedades da madeira em lotes, assim existem

várias espécies que enquadram na mesma classe de resistência. Com essa divisão fica mais fácil a utilização de madeiras nos projetos estruturais, e na hora da compra o fornecedor deve mostrar ensaios de laboratórios idôneos que comprovem o enquadramento da madeira na classe exigida no projeto. As tabelas descritas na norma e referentes as coníferas e dicotiledôneas, são exibidas nas **Imagens 2 e 3.**

Coniferas

(Valores na condição padrão de referência U = 12%)

Classe	f _{cok} (MPa)	f _{vk} (MPa)	E _{co,m} (MPa)	$\rho_{bas,m} (kg/m^3)$	ρ _{aparente} (kg/m ³)
C 20	20	4	3500	400	500
C 25	25	5	8500	450	550
C 30	30	6	14500	500	600

Imagem 2 – Classe de resistência das coníferas (Fonte: NBR 7190:1997)

Dicotiledôneas

(Valores na condição padrão de referência U = 12%)

Classe	f _{cok} (MPa)	f _{vk} (MPa)	E _{co,m} (MPa)	$\rho_{bas,m}~(kg/m^3)$	$\rho_{aparente}~(kg/m^3)$
C 20	20	4	9500	500	650
C 30	30	5	14500	650	800
C 40	40	6	19500	750	950
C 50	50	7	22000	770	970
C 60	60	8	24500	800	1000

Imagem 3 - Classes de resistência das dicotiledôneas (Fonte: NBR 7190:1997)

3.2. Ações usuais em pontes de madeira

As ações que exercem esforços nas estruturas são:

3.2.1. Ações permanentes:

Aquelas que ocorrem em toda vida útil da construção. Constituídas pelo peso próprio dos elementos estruturais e não estruturais: madeira na classe de umidade 1 (12%), elementos metálicos das conexões (3% do peso próprio da madeira), revestimentos, guarda-corpo, guarda-rodas, lastros, entre outros. Alguns materiais utilizados na construção de pontes:

Material	Peso (kN/m ³)
Concreto Simples	24
Concreto Armado	25
Revestimento Asfáltico	24
Aço	78
Lastro de Brita	17
Madeira	6 a 12

Imagem 4 - Pesos específicos de materiais de construção usuais (Fonte: Manual de projeto e construção de pontes de madeira - LaMEM)

3.2.2. Ações acidentais verticais

Ocorre com uma frequência significativa, é composta basicamente pelas cargas de trânsito de pessoas e veículos.

Passarela de pedestres:

Classe única com p = 5 kN/m^2 , sem pacto.

Pontes Rodoviárias:

Classe 45: Veículo-Tipo pesando 450 kN.

Classe 30: Veículo-Tipo pesando 300 kN.

Classe 12: Veículo-Tipo pesando 120 kN.

Os carregamentos a serem considerados são demonstrados na **Imagem 5**.

Classe	Veículo			Carga uniformemente distribuída						
da	т.	Peso	total	j	p	I)'	D: 1		
Ponte	Tipo	kN	tf	kN/m²	kgf/m ²	kN/m ²	kgf/m ²	Disposição da carga		
45	45	450	45	5	500	3	300			
30	30	300	30	5	500	3	300	Carga p em toda a pista Carga p' nos passeios		
12	12	120	12	4	400	3	300			

Imagem 5 - Cargas móveis nas pontes (Fonte: Manual de projeto e construção de pontes de madeira – LaMEM)

A distribuição da carga está representada na figura abaixo:

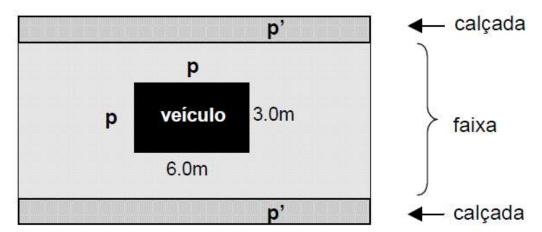


Imagem 6 – Disposição em planta das cargas móveis (Fonte: Manual de projeto e construção de pontes de madeira – LaMEM)

A características dos veículos estão na tabela e esquema a seguir:

	Unidade	Tipo 45	Tipo 30	Tipo 12
Quantidade de eixos	Eixo	3	3	2
Peso Total do Veículo	kN - tf	450 - 45	300 - 30	120-12
Peso de cada roda dianteira	kN - tf	75 – 7,5	50 - 5	20-2
Peso de cada roda traseira	kN - tf	75 – 7,5	50 - 5	40-2
Peso de cada roda intermediária	kN - tf	75 – 7,5	50 - 5	H
Largura de contato b1 de cada roda dianteira	m	0,50	0,40	0,20
Largura de contato b3 de cada roda traseira	m	0,50	0,40	0,30
Largura de contato b2 de cada roda intermediária	m	0,50	0,40	=
Comprimento de contato de cada roda	m	0,20	0,20	0,20
Área de contato de cada roda	m ²	0,20 x b	0,20 x b	0,20 x b
Distância entre eixos	m	1,50	1,50	3,00
Distância entre os centros de roda de cada eixo	m	2,00	2,00	2,00

Imagem 7 - Características dos veículos (Fonte: Manual de projeto e construção de pontes de madeira - LaMEM)

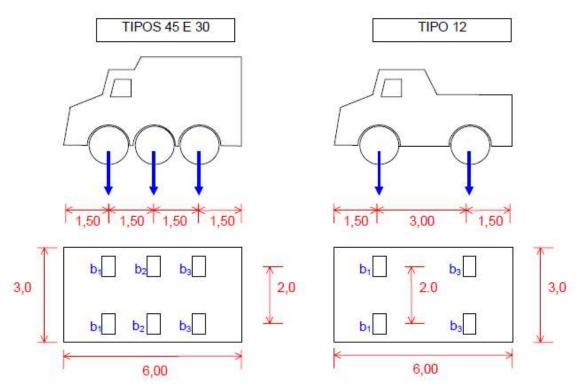


Imagem 8 – Veículos-Tipo (Fonte: Manual de projeto e construção de pontes de madeira – LaMEM)

3.2.3. Impacto Vertical

O impacto vertical é considerado uma ação de curta duração, e é aplicado às cargas móveis e o fator de multiplicação é o seguinte:

$$\varphi = 1 + \frac{\alpha}{40 + L}$$

Onde:

L – vão teórico do tramo

a – 20 para pontes com revestimento em madeira, 12 para revestimento de concreto ou asfáltico.

Não deve ser considerado os impactos nos encontros, pilares maciços, fundações e passeios.

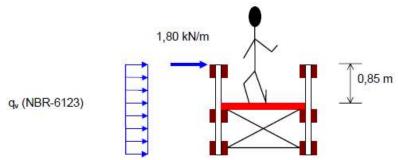
Devido a maior resistência das peças de madeira no impacto vertical, o valor será multiplicado por 0,75.

3.2.4. Forças Longitudinais

Forças ocasionadas pela aceleração e frenagem dos veículos, e é de curta duração.

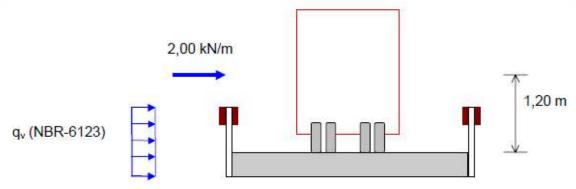
 F_{long} deve ser aplicado sem impacto, 2,00 m acima da pista de rolamento.

$$F_{long} \geq \begin{cases} 5\% \text{ do carregamento total do tabuleiro com carga m\'ovel uniformemente} \\ \text{distribu\'ida (aceleração)} \\ 30\% \text{ do ve\'iculo} - \text{tipo para cada faixa de tr\'afego (frenagem)} \end{cases}$$


Imagem 9 – Força longitudinal em pontes rodoviárias (Fonte: Manual de projeto e construção de pontes de madeira – LaMEM)

3.2.5. Vento

Ação do vento é de curta duração e está descrita na NBR 6123. Pela NBR 7190/97 a ação do vento sobre veículos e pedestres deve ser considerada como se segue:


Passarela de pedestres: com valor característico de 1,80 kN/m (horizontal) a uma altura de 0,85 m acima do piso.

Pontes rodoviárias: com valor característico de 2,00 kN/m (horizontal) aplicado a uma altura de 1,20 m acima do solo da superfície de rolamento.

Imagem 10 – Vento sobre passarela (Fonte: Manual de projeto e construção de pontes de madeira – LaMEM)

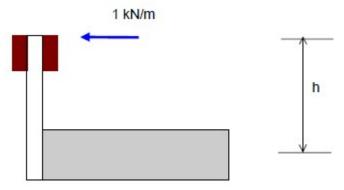


Imagem 11 – Vento sobre veículo (Fonte: Manual de projeto e construção de pontes de madeira – LaMEM)

3.2.6. Força no Guarda-Corpo

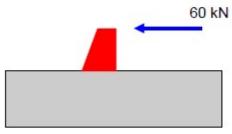

A força no guarda-corpo é composta de uma carga uniformemente distribuída de 1 kN/m por todo o topo do elemento.

Imagem 12 – Força no guarda-corpo (Fonte: Manual de projeto e construção de pontes de madeira – LaMEM)

3.2.7. Força no guarda-rodas

Em pontes rodoviárias são utilizadas uma base de 60 kN no topo do guarda-rodas sem impacto.

Imagem 13 – Força no guarda-rodas (Fonte: Manual de projeto e construção de pontes de madeira – LaMEM)

3.3. Combinações e Ações

Na NBR 7190/1997 são definidas as combinações necessárias para verificar o estado limite último e o estado limite de serviço. Em pontes de madeira os casos se restringem em: combinações últimas normais para os estados limites últimos e combinações de longa duração para os estados limites de serviço. As combinações descritas referem-se as ações permanentes normais e do trem tipo associado ao efeito dinâmico principal que é o impacto.

As combinações utilizam fatores de ponderação, as quais consideram as probabilidades de ocorrência simultânea, e também consideram as variações que podem ocorrer pelas avaliações do projetista.

Para a avaliação dos estados limites últimos são previstas três combinações. As combinações últimas normais, as combinações especiais (ou de construção) e as combinações excepcionais. Para a avaliação dos estados limites de serviço, pode ser realizada combinações de longa duração, média duração, curta duração ou instantânea, de acordo com o rigor que se pretende com tais verificações.

Nas combinações para os estados limites últimos, os coeficientes γ_g das ações permanentes (**Imagens 14 e 15**) ponderam os valores das ações para os efeitos favoráveis e desfavoráveis. Quando, nas ações permanentes, o peso próprio da estrutura é maior que 75% da totalidade das ações permanentes, devem ser considerados os valores de ponderação da **Imagem 14** (pequena variabilidade) e quando não, os da **Imagem 15** (grande variabilidade).

Combinações	Para efeitos				
	Desfavoráveis	Favoráveis			
Normais	$\gamma_{\text{g}} = 1.3$	$\gamma_g=1,0$			
Especiais ou de Construção	$\gamma_g = 1,2$	$\gamma_g = 1.0$			
Excepcionais	$\gamma_{\sf g}=1,1$	$\gamma_g = 1.0$			

Imagem 14 – Ações permanentes de pequena variabilidade (Fonte: NBR 7190/1997)

Combinações	Para efeitos				
	Desfavoráveis	Favoráveis			
Normais	$\gamma_g = 1,4$	$\gamma_g = 0.9$			
Especiais ou de Construção	$\gamma_g = 1,3$	$\gamma_g = 0.9$			
Excepcionais	$\gamma_g = 1,2$	$\gamma_g = 0.9$			

Imagem 15 – Ações permanentes de grande variabilidade (Fonte: NBR 7190/1997)

Nas combinações para os estados limites últimos, as ações variáveis são ponderadas através dos coeficientes γ_q de acordo com a natureza da ação apresentada na **Imagem 16**.

Combinações	Ações variáveis em geral incluídas as cargas acidentais móveis	Efeitos da temperatura
Normais	$\gamma_q = 1,4$	$\gamma_\epsilon=1,2$
Especiais ou de Construção	$\gamma_q = 1,2$	$\gamma_{\epsilon} = 1.0$
Excepcionais	$\gamma_q = 1,0$	$\gamma_{\epsilon} = 0$

Imagem 16 – Ações variáveis (Fonte: NBR 7190/1997)

Quando houver mais de uma ação variável a ser considerada, deve-se ponderar a probabilidade de ocorrência simultânea das mesmas através dos valores de ψ_i da **Imagem 17**.

Ações em estruturas correntes	Ψ_0	Ψ_1	Ψ_2
- Variações uniformes de temperatura em relação à média anual local	0,6	0,5	0,3
- Pressão dinâmica do vento	0,5	0,2	0
Cargas móveis e seus efeitos dinâmicos	Ψ_0	Ψ_1	Ψ_2
- Pontes de pedestres	0,4	0,3	0,2
- Pontes rodoviárias	0,6	0,4	0,2
- Pontes ferroviárias (não especializadas)	0,8	0,6	0,4

Imagem 17 – Fatores de combinação e utilização – Síntese (Fonte: NBR 7190/1997)

Combinações ultimas normais (Estados Limites Últimos – ELU)

$$F_d = \sum_{i=1}^{m} \gamma_{Gi} F_{Gi,k} + \gamma_{Q} \left[F_{Q1,k} + \sum_{j=2}^{n} \psi_{0j} F_{Qj,k} \right]$$

Onde $F_{Gi,k}$ representa o valor característico das ações permanentes, $F_{Q1,k}$ o valor característico da ação variável considerada como ação principal para a combinação considerada e $\psi_{0j} * F_{Qj,k}$, os valores reduzidos de combinação das demais ações variáveis, determinados de acordo com a **Imagem 17**. Em casos especiais, devem ser consideradas duas combinações referentes às ações permanentes: em uma delas, admite-se que as ações permanentes sejam desfavoráveis e na outra que sejam favoráveis à segurança.

Combinações de longa duração (Estados Limites de Serviço – ELS)

As combinações de longa duração são consideradas no controle usual das deformações das estruturas. Nestas combinações, todas as ações variáveis atuam com seus valores correspondentes à classe de longa duração. Estas combinações são expressas por:

$$F_{d,uti} = \sum_{i=1}^{m} F_{Gi,k} + \sum_{j=1}^{n} \psi_{2j} F_{Qj,k}$$

4. Dimensionamento

4.1. Esquema geral da ponte

Os elementos estruturais são:

- Longarinas;
- Tabuleiro;
- Rodeiro;
- Guarda-rodas;
- Defensa;
- -Pilares e Fundação

As longarinas são dispostas no sentido longitudinal e são responsáveis por suportar o peso próprio da estrutura e as cargas acidentais e seus efeitos dinâmicos. São ligadas por barras roscadas de 25,4 mm de diâmetro.

O tabuleiro é constituído de peças de madeira serrada, dispostas no sentido transversal, e são ligadas nas longarinas por parafusos auto-atarraxantes de 10 mm de diâmetro. O veículo-tipo passo sobre o rodeiro, porém em caso de o veículo sair do trajeto o tabuleiro deve suportar a carga acidental.

O rodeiro é formado de peças de madeira serrada, dispostas no sentido longitudinal e ligadas ao tabuleiro por parafusos auto-atarraxantes de 10 mm de diâmetro. O rodeiro indica ao veículo o trajeto a ser percorrido em cima da ponte. No rodeiro as peças devem ser de madeira dura e que resistam a abrasão dos pneus.

O guarda-rodas e a defensa são itens de segurança ao tráfego da ponte. São dimensionadas para que o veículo não saia da ponte no sentido transversal. O guarda-rodas é formado de uma viga da mesma dimensão das longarinas, e as defensas utiliza-se peças de madeira serrada. O guarda-rodas e o pilarete da defensa são conectados às longarinas da borda com barras roscadas de 25,4 mm de diâmetro.

É importante frisar que o dimensionamento proposto é para peças de **madeira roliça**. Para utilizar peças de madeira com **seção transversal retangular**, será utilizado dimensões que suportem o mesmo momento de inércia que uma peça roliça suporta. Esta adequação será feita no final do memorial descritivo.

4.2. Hipóteses de cálculo

- 1° As longarinas diretamente abaixo do rodeiro são dimensionadas para suportar a ação permanente de peso próprio e as ações acidentais e seus efeitos dinâmicos. O diâmetro de referência utilizado no cálculo estrutural deve ser o diâmetro a 1/3 do topo, considerando a conicidade;
- 2° Em cada linha de rodas do veículo-tipo têm-se duas vigas suportando o carregamento;
- **3**° Apesar do tabuleiro de rodeiro contribuírem na distribuição transversal do carregamento para as longarinas vizinhas, este efeito não é considerado para o dimensionamento.

4.3. Etapas do dimensionamento

1° Definir a geometria e classe estrutural da ponte

Vão – 6,00 metros Largura – 4,50 metros Classe da ponte – Classe 45

2° Definir a classe de resistência de madeira

Classe de resistência - C50

Espécies que enquadram na classe:

Angelim Ferro, Angelim P. Verdadeiro, E. Paniculata, E. Punctata, Garapa Roraima, Guaiçara, Ipê, Mandioqueira, Tatajuba.

Caso necessite pode-se usar a classe C60, para aumentar o leque de opções. Espécies: Champagne, Catiúba, Jatobá, Maçaranduba, Sucupira.

3° Estimar a carga permanente

Vamos utilizar o peso próprio das longarinas e dos conectores metálicos para o cálculo das cargas permanentes, e será desconsiderado a carga do tabuleiro.

Para pré-dimensionamento iremos adotar a tabela a seguir:

Comprimento	Vão (m)	Vão Classe 30			Classe 45			
(m)		C60	C50	C40	C60	C50	C40	
6,0	5,5	37 cm	39 cm	43 cm	43 cm	45 cm	48 cm	
7,0	6,5	40 cm	43 cm	46 cm	46 cm	49 cm		
8,0	7,5	43 cm	46 cm	50 cm	50 cm			
9,0	8,5	46 cm	49 cm	,				
10,0	9,5	49 cm		•				

Imagem 18 – Pontes em vigas simples de peças roliças (diâmetro médio das longarinas) (Fonte: Manual de projeto e construção de pontes de madeira – LaMEM)

Iremos adotar o vão de 6,00 metros, Classe 45 e madeira C50. Temos um diâmetro de 49 centímetros considerando um vão teórico imediatamente superior na tabela da **Imagem 18**. Através da tabela da **Imagem 3** pode-se encontrar o valor da Densidade Aparente de 970 kg/m³. Cálculo volumétrico:

$$V_l = \frac{\pi \cdot d^2 \cdot L}{4} = \frac{\pi \cdot 0,49^2 \cdot 6,00}{4} = 1,13 \text{ m}^3$$

Sendo:

 V_l – volume da peça no vão teórico [m³]

d – diâmetro da peça [m]

L – largura do vão teórico [m]

Com o volume, multiplicamos pela densidade aparente para encontrarmos a carga total:

$$C_t = \rho_{ap}. V_l. 9.8 = 970.1,13.9.8 = 10741,78 N$$

Acrescentando 3% dos conectores metálicos:

$$C_t = 11064,03 N = 11,06 kN$$

Sendo:

 ρ_{ap} - densidade aparente [kg/m³] C_t - carga total não distribuída [kN]

As cargas permanentes serão distribuídas pelo vão teórico, então temos:

$$g = \frac{C_t}{L} = \frac{11,06}{6.00} = 1,85 \, kN/m$$

4° Posicionamento transversal do veículo-tipo

Há duas posições utilizadas para o dimensionamento da estrutura. A primeira o veículo tipo percorre o trajeto sobre o rodeiro (**Imagem 19**), neste caso é dimensionado duas longarinas para cada rodeiro que irá suportar as cargas acidentais e seus efeitos dinâmicos.

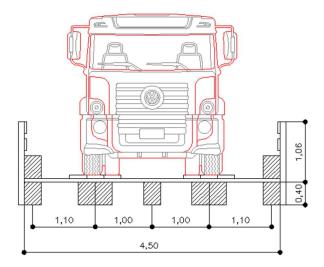


Imagem 19 – Posicionamento transversal do veículo sobre o rodeiro
 5º Realizar o cálculo dos esforços máximos

Para o dimensionamento das longarinas deve-se calcular o momento fletor máximo, a cortante máxima e a flexa máxima devido à carga permanente e a acidental. O diagrama a seguir mostra como as cargas e distâncias são distribuídas no vão teórico.

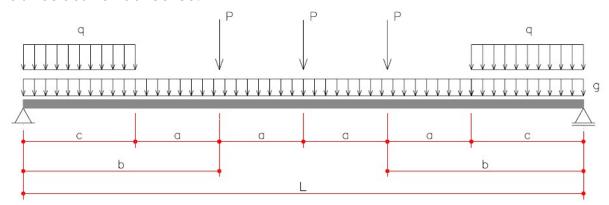


 Imagem 20 - Diagrama de esforços para momento fletor e flecha (Fonte: Manual de projeto e construção de pontes de madeira – LaMEM)
 Onde:

L - vão teórico [m]

a - 1,50 m (classe 30 e 45)

b - (L-2a)/2 [m]

c - (L-4a)/2 [m]

q – carga acidental kN/m

g – carga permanente kN/m

P - 7,50 kN para Classe 45

O momento máximo devido a carga permanente será:

$$M_{g,k} = q.\frac{L^2}{8}$$

$$M_{g,k} = 1,85. \frac{6^2}{8} = 8,32 \text{ kN. m}$$

O momento máximo para as cargas acidentais será:

$$M_{q,k} = \left(\frac{3.P.L}{4} - P.a\right)$$
 para 3 m < L \le 6 m

$$M_{q,k} = \left(\frac{3.P.L}{4} - P.a\right) + \frac{q.c^2}{2}$$
 para 3 m < L \le 6 m

Como o vão é de 6,00 metros, temos:

$$M_{q,k} = \left(\frac{3.P.L}{4} - P.a\right) = \left(\frac{3.7,50.6,00}{4} - 7,50.1,50\right)$$

$$M_{q,k} = 22,50 \text{ kN. m}$$

A flecha máxima será calculada pela equação:

$$\delta_{g,k} = \frac{5. g. L^4}{384. E_{M,ef}. I}$$

$$\delta_{g,k} = \frac{5.1,85.6,00^4}{384.22000000.2,83.10^{-3}}$$

$$\delta_{g,k} = 5.01.10^{-4} \, m = 0.05 \, cm$$

Flecha máxima das cargas acidentais:

$$\delta_{q,k} = \frac{P}{48. E_{M,ef}. I}. [L^3 + 2. b. (3. L^2 - 4. b^2)]$$

$$\delta_{q,k} = \frac{7,50}{48.22000000.2,83.\,10^{-3}}.\,[6,\!00^3 + 2.1,\!50.\,(3.\,6,\!00^2 - 4.\,1,\!50^2)]$$

$$\delta_{a,k} = 1{,}30.10^{-3} m = 0{,}13 cm$$

Para o cálculo das reações de apoio do veículo-tipo deve ser posicionado conforme o diagrama de esforços da **Imagem 21**. O valor é utilizado para o dimensionamento da região dos apoios e fundações.

A reação para a carga permanente será:

$$R_{g,k} = \frac{q.L}{2}$$

$$R_{g,k} = \frac{1,85.6,00}{2}$$

$$R_{g,k} = 5,55 \, kN$$

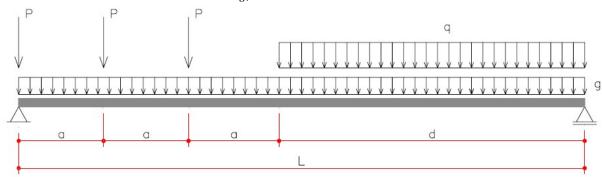


Imagem 21 - Diagrama de esforços para cálculo das reações de apoio

As reações de apoio para as cargas acidentais poderão ser encontradas pela equação:

$$R_{q,k} = \frac{P}{L} \cdot (L + 3. a + 2. d) + \frac{q \cdot d^2}{2. L}$$

$$R_{q,k} = \frac{7,50}{6,00} \cdot (6,00 + 3.1,50 + 2.1,50) + \frac{1,11.1,50^2}{2.6,50}$$

$$R_{q,k} = 17,07 \, kN$$

Para o cálculo da cortante, o diagrama de esforços solicitantes deve seguir o modelo da **Imagem 22.**

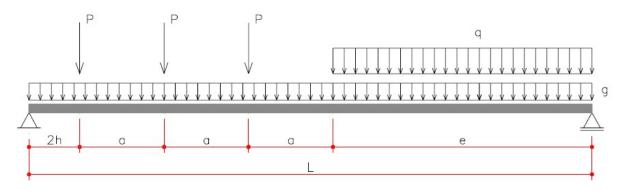


Imagem 22 – Diagrama para o cálculo da cortante máxima

Onde:

e - L-3a-2h [m]

h – diâmetro médio da longarina [m]

Cortante máxima devido à carga permanente:

$$Q_{g,k} = \frac{g.L}{2}$$

$$Q_{g,k} = \frac{1,85.6,00}{2}$$

$$Q_{q,k} = 5,55 \, kN$$

Cortante máxima devido às cargas acidentais:

$$Q_{q,k} = \frac{P}{L} \cdot (6. a + 3. e) + \frac{q \cdot e^2}{2 \cdot L}$$

$$Q_{q,k} = \frac{7,50}{6,00} \cdot (6.1,50 + 3.0,52) + \frac{1,11.0,52^2}{2.6,00}$$

$$Q_{q,k} = 13,22 \, kN$$

Para o dimensionamento do tabuleiro será calculado somente o momento fletor máximo devido à carga acidental e seus efeitos dinâmicos. Será desconsiderado as cargas permanentes e não haverá verificação de flecha, cortante e reações.

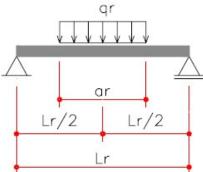


Imagem 23 – Diagrama de esforços para o tabuleiro

Onde:

qr - P/ar [kN/m]

ar - 0,50 m para Classe 45

Lr – vão do tabuleiro (distâncias entre longarinas) [m]

O momento fletor máximo é dado pela equação:

$$M_{rq,k} = \frac{P}{4}.\left(Lr - ar\right)$$

$$M_{rq,k} = \frac{7,50}{4}.\left(1,00-0,50\right)$$

$$M_{rg,k} = 0.94 \, kN.m$$

6° Realizar as combinações das ações

Para o dimensionamento das longarinas, os valores de cálculo das ações momento fletor e cortante, devem ser obtidos da combinação última normal seguindo as especificações da NBR 7190.

$$\begin{split} M_{d} &= \gamma_{g}.\,M_{g,k} + \gamma_{q}.\,[M_{q,k} + 0.75.\,(\varphi - 1).\,M_{q,k}] \\ Q_{d} &= \gamma_{g}.\,Q_{g,k} + \gamma_{q}.\,\big[Q_{q,k} + 0.75.\,(\varphi - 1).\,Q_{q,k}\big] \\ \varphi &= 1 + \frac{\alpha}{40 + L} \end{split}$$

Onde:

 γ_g – 1,3 para madeira classificada de pequena variedade γ_g – 1,4 para ações variáveis (cargas acidentais) φ – coeficiente de impacto vertical α – 20 para pontes rodoviárias com assoalho de madeira

20

$$\varphi = 1 + \frac{20}{40 + 6,00} = 1,43$$

$$M_d = 1,3.8,32 + 1,4. [22,5 + 0,75. (1,43 - 1).22,50]$$

$$M_d = 52,50 \text{ kN. m}$$

$$Q_d = 1,3.5,55 + 1,4. [13,22 + 0,75. (1,43 - 1).13,22]$$

$$Q_d = 31,70 \text{ kN}$$

Para o dimensionamento dos apoios, o valor de cálculo da reação de apoio, deve ser obtido pela combinação última normal não considerando os efeitos de impacto, segunda a equação:

$$R_d = \gamma_g. R_{g,k} + \gamma_q. R_{q,k}$$

 $R_d = 1,3.5,55 + 1,4.17,07$
 $R_d = 31,11 \ kN$

Para as longarinas, sugere-se que a flecha deva ser verificada pela condição:

$$\delta_{q,k} \le \frac{L}{360}$$

$$\delta_{q,k} \le 1,67~cm$$

$$\delta_{g,k} + \delta_{q,k} = 0,05 + 0,13 = 0,18~cm$$

$$\delta_{q,k} + \delta_{q,k} = 0.18 \ cm \le 1.67 \ cm \ Ok!$$

O momento fletor do tabuleiro será obtido desprezando os efeitos permamentes:

$$M_{r,d} = M_{rq,d}$$

$$M_{r,d} = 0.94 \, kN. \, m$$

7° Dimensionamento das longarinas e tabuleiros

O diâmetro mínimo das longarinas é encontrado através do maior valor das seguintes equações:

$$D_{min} \ge \left(\frac{16.M_d}{\pi.f_{co.d}}\right)^{\frac{1}{3}} - tensões\ normais$$

$$D_{min} \ge \left(\frac{8.Q_d}{3.\pi.f_{vo.d}}\right)^{\frac{1}{2}} - tensões tangenciais$$

$$D_{min} \ge \left(\frac{360}{L} \cdot \frac{4.P}{3.\pi \cdot E_{M,ef} \cdot L} \cdot (L^3 + 2.b.(3.L^2 - 4.b^2))\right)^{\frac{1}{4}} - flecha$$

$$D_{min} \ge \left(\frac{16.52,50}{\pi,50000}\right)^{\frac{1}{3}} = 0.18 \ m$$

$$D_{min} \ge \left(\frac{8.31,70}{3.\pi,7000}\right)^{\frac{1}{2}} = 0,062 \ m$$

$$D_{min} \ge \left(\frac{360}{6,00} \cdot \frac{4.7,50}{3.\pi \cdot 22000000.6,00} \cdot \left(6,00^3 + 2.1,50 \cdot (3.6,00^2 - 4.1,50^2)\right)\right)^{\frac{1}{4}} = 0,17 \text{ m}$$

Então o diâmetro mínimo é de 18 cm.

Para o cálculo da espessura do tabuleiro, temos:

$$esp \ge \left(\frac{6.M_{r,d}}{larg.f_{co,d}}\right)^{\frac{1}{2}} - tensões normais$$

Onde:

esp – espessura do tabuleiro [m]

larg – largura da roda (20 cm para as classes 45)

$$esp \ge \left(\frac{6.0,94}{0,20.50000}\right)^{\frac{1}{2}}$$

 $esp \ge 0.03 m - espessura mínma 3 cm$

Após os cálculos verificamos que longarinas de 49 cm ultrapassam em muito o diâmetro mínimo que é de apenas 18 cm. Vamos calcular o momento de inércia de uma longarina de 18 cm para depois utilizar um momento de inércia maior de uma peça retangular. Assim faremos a transferência de seção de cálculo de circular para retangular.

$$I_o = \frac{\pi \cdot r^4}{4} = \frac{\pi \cdot 0.09^4}{4}$$

$$I_o = 5.15.10^{-5} m^4$$

Vamos adotar uma peça retangular de base igual a 25 cm e 30 cm de altura, então:

$$I_{\blacksquare} = \frac{b \cdot h^3}{12} = \frac{0,25.0,30^3}{12}$$

$$I_{\blacksquare} = 5,62.10^{-4} \, m^4$$

Vemos que o momento de inércia da peça retangular supera em muito o da peça com diâmetro de 18 cm.

Os apoios devem resistir a carga das reações que é de 31,11 kN. A resistência a compressão paralelas as fibras das madeiras de classe C50 conseguirá resistir a essa compressão facilmente.

Elementos c	la I	po	nte
-------------	------	----	-----

Longarinas – 25x30 cm

Tabuleiro – 6 cm de espessura

Rodeiro – 6 cm de espessura

Guarda-Rodas – 15x15 cm

Apoios – pilares de peças roliças de ø30 cm de diâmetro contraventadas, contra-vigas de 2 m de comprimento e seção de 25x30 cm, travessas de 4,00 m de comprimento e seção de 25x30 cm.

Fundações – blocos de concreto armado com aditivo impermeabilizante, em caso de solos mais moles será utilizado blocos de concreto armado associado com estacas até encontrar a camada de resistência adequada.

Estudos geotécnicos serão necessários antes da execução das fundações.

Detalhes dos elementos em prancha de projeto.

Nova Brasilândia - MT, 23 de fevereiro de 2024.

Engenheiro Civil - Saulo Nakamura

CREA SP: 5069469716